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Abstract: Rare-earth (RE) ions doped perovskite-related fluorides are candidates for tunable optical materials. In this 

work, SrMgF4: xCe (x=0, 0.007, 0.013 and 0.035, in mole) powders were synthesized by a precipitation method. X-ray 

diffraction (XRD) patterns indicate that the obtained phosphors possess monoclinic superstructures. Electrovalence 

analysis confirms the existence of Ce3+/Ce4+ mixed valence. Two distinct fluorescence bands B and C were observed 

with different excitation wavelengths in the ultraviolet (UV) light region. Energy levels were modified strongly by the 

crystal field derived from monoclinic superstructures when the symmetry of Ce3+-polyhedra changed from high- to 

low- symmetry. 
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Perovskite-related SrMgF4 (SMF) is a ferroelectric 
with the largest bandgap (Eg=12.50 eV) in nature[1-10]. 
Banks et al.[8-9] identified its orthorhombic structure 
(Cmcm, Space Group No. 63, Z = 4; Pdf 89-1391/ ICSD 
86248) firstly in 1980. In 2001, Ishizawa et al.[11] 

determined SrMgF4: 0.00006Ce crystal at 25 ℃ as a 

monoclinic superstructure. In 2002, Abrahams[12] predicted 
that a phase transition from the ferroelectric to paraelectric 

state at Tc~177 ℃  accompanied by two kinds of 

monoclinic symmetry change: m-SrMgF4 (P1121, S.G.No.4, 

Z=12; ICSD 279588) ~177 (  270 370) ℃ m’-SrMgF4 

(P1121/m, S.G.No. 11, Z = 12; ICSD 94669). 
Mel’nikova et al.[13] (2014) and Yelisseyev et al.[14] 
(2015) in the same group confirmed elaborately a low- to 

high- temperature (LTHT) phase transition at ~205 ℃, 

close to 177 ℃  which predicted by Abrahams[12]: 

m-SrMgF4 (P21, S.G.No.4, Z=12; CCDC 1029322 / ICSD 

193583) (205 1) ℃  orth-SrMgF4 (Cmc21, S.G.No.36, 

Z=4; CCDC 1029321/ICSD 193584)[13-14]. 
As for RE-doped AMF4 (A-one of the alkaline, 

alkali-earth or RE elements; M-one of the alkali-earth or 
transition-metal (TM) elements with the octahedral 
coordination MF6), the bright emission from RE ions can 
be widely applied in fluorescent lamps, plasma display 
panels, light emitting diodes (LEDs), solar concentrators,  

phosphors and bulk lasers because AMF4 is the effective 
acceptor for RE dopants. Examples are listed as follows: 
Ce3+[11,15]/Sm2+[16-17]/Gd3+[18]/Er2+[2]-doped SrMgF4, 
Ce3+-doped BaNiF4

[19], Ce3+/Eu2+-doped and (Ce3+, Eu2+) 
co-doped KMgF4

[20], Ce3+[21-26]/Nd3+[22]/Eu2+[22,27]/Gd3+[18]/ 
Tb3+[21]-doped, (Ce3+, Na+)[28-29] co-doped and (Ce3+, 
Mn2+)[22] co-doped BaMgF4, and so on. The single-crystal 
SrMgF4 can be synthesized by a vertical Bridgman me-
thod using binary fluorides (SrF2/MgF2) as raw mate-
rials[5,13,14,30-31]. Methods to prepare SrMgF4 polycrystal-
line powders include the solid-state method[8-9,17] using 
binary fluorides (SrF2/MgF2) directly as well, the me-
chanochemical method using Mg(OH)2, Sr(Ac)2 and 
NH4F

[32], and the solution chemical route using soluble 
salts and NH4F/NH4HF2

[2,33-35] as raw materials. 
In this work, SrMgF4: Ce polycrystalline powders 

were prepared and their phase structure, electrovalence 
and photoluminescence (PL) spectra were investigated. 

1  Experimental 

Ce-doped SrMgF4 powders were synthesized through 

a precipitation method using SrCO3 (≥99.99%, mass 

percent), Mg(CH3COO)2·4H2O (≥99.9%, mass percent), 

Ce(NO3)3·6H2O (≥99.99%, mass percent), NH4HF2 

(≥ 98.0%, mass percent) and CH3COOH (≥99.5%, 
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mass percent) as raw materials[33-34]. Molar ratios of 
initial mixtures were (1–x)SrCO3: 1 Mg(CH3COO)2·4H2O: 
xCe(NO3)3·6H2O. The SrCO3 was dissolved by mole 
percent 10% excessive diluted acetic acid (0.2 mol/L), 
then the Mg(CH3COO)2·4H2O and Ce(NO3)3·6H2O were 
dissolved in the solution successively according to the 
stoichiometric amount. The mixed solution was added 
dropwise to mass percent 10% excessive diluted NH4HF2 
(0.3 mol/L) and kept stirring in a Teflon beaker. A white 
floc was formed and then turned into a precipitation. The 

precipitation was dried at 80 ℃ for 48 h, washed by 

deionized water, dried again at 80 ℃ for 3 h. Last, dried 

white powders were calcined at 400 ℃ in air for 1 h, 

resulting in the final SrMgF4: xCe powders (x = 0, 0.007, 
0.013 and 0.035, mole composition measured by Induc-
tively Coupled Plasma-optical emission spectrometer (ICP); 
samples labeled hereafter as SMF, SMF: 0.007Ce, 
SMF: 0.013Ce and SMF: 0.035Ce). The difference between 
the measured and nominal mole composition came 
mainly from the purity, hydrate content and filtration 
process[31]. Reaction equations are listed as follows: 

RT, in air
3 2 2 2

RT, in air
2 2 2 2

RT, in air
3 3 2 2 3 3

SrCO + HAc + H O  Sr(Ac) solution CO  

Mg(Ac) 4H O + H O  Mg(

 +

Ac) solution

Ce(NO ) H O + H O  Ce(NO ) solution

 

6






 






  

 

4 2 2+ NH HF
added dropwi

(0.3 mol/L, +10wt%) + H O, ~0.15 mol/L
stirredse,  dried @   48 ,, 80  for  h  in air


℃

 

(Sr, Mg, Ce)F2+ + NH3↑ + HAc↑ + HNO3↑ + H2O↑ + 

HF↑ washed, ,   for 1  dried  calcined@400  in h, air℃ SrMgF4: xCe 

(x = 0, 0.007, 0.013 and 0.035). 
The crystal structure and phase purity of samples were 

identified by XRD (Empyrean, PANalytical Ltd., Nether-
lands) with step size of 0.01° and scanning rate of 
0.02 (°)/s, using the CuKα1 radiation (λ = 0.15406 nm at 
40 kV and 40 mA). The actual compositions of samples 
were determined by ICP (Prodigy 7, Leeman Labs Inc., 
USA), while powders dissolved completely in a nitrohy-
drochloric acid in advance. Electrovalence measurements 
were carried by an X-ray photoelectron spectrograph 
(XPS, Multilab 2000, VG Inc., USA) equipped with a 

focused monochromatized AlKα X-ray source (h = 
1486.6 eV). Binding energies were calibrated by fixing 
the saturated hydrocarbon component of the C1s peak at 
284.8 eV. Absorption spectra were obtained using an 
ultraviolet/visual/near-infrared (UV/VIS/NIR) spectro-
meter (Lambda 750S, PerkinElmer, USA). Photolumine-
scence excitation and emission spectra were recorded on 
a fluorescence spectrophotometer (F-7000, Hitachi, Japan) 
at bias potential of 700 V. All measurements were carried 
out at room temperature (RT). 

2  Results and discussion 

2.1  Phase structures 
In Fig. 1, XRD patterns of Ce-doped SrMgF4 powders 

reveal that monoclinic LT-SrMgF4 with superstructures 
(P21, S.G.No. 4, Z = 12; CCDC 1029322/ ICSD 193583[14]) 
are formed in SMF, SMF: 0.007Ce and SMF: 0.013Ce 
samples. The monoclinic superstructures have doubled a 
and tripled c cell-length via the orthorhombic unit cell in 
HT-SrMgF4 phases (Cmc21, S.G.No.36, Z = 4; CCDC 
1029321/ICSD 193584)[13-14]. When the dopant content 
reached 3.5% (SMF: 0.035Ce), the cubic SrF2 impurity 
was found. There was no indication of MgF2 phase in all 
samples. 

Compared to XRD patterns of orthorhombic HT- 
SrMgF4, those of monoclinic LT-phases with superstruc-
tures are almost the same besides some characteristic 

peaks appearing at 2θ=16.1°, 18.1°, 21.6°, (26.80.2)°, 
and so on. This confirms the formation of SrMgF4: xCe 
perovskite-like fluoride solid solutions (x=0, 0.007, 
0.013 and 0.035). Considering that Ce3+/4+ and Sr2+ ions  

 

 
 

Fig. 1  XRD patterns of SrMgF4: xCe powders (x = 0, 0.007, 
0.013, and 0.035) 
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have close effective ionic radii (r)[36] and the coordina-
tion number (CN) of Sr2+ in monoclinic LT-SrMgF4 is 

711[11,14-15], it can be concluded that monoclinic LT- 
SrMgF4 with superstructures originate from substitution 

by the Ce3+/4+ ( 3+Ce
r =0.1070.134 nm while 3+Ce

CN =712; 

4+Ce
r =0.0970.114 nm while 4+Ce

CN =812) for Sr2+ 

( 2+Sr
r =0.1210.144 nm while 2+Sr

CN = 712) in the 

polyhedra composed of F− ligand ions. 

2.2  XPS results 
The core level XPS spectra of SMF, SMF: 0.007Ce, 

SMF: 0.013Ce and SMF: 0.035Ce powders are shown in 
Fig. 2. Spectral features are fitted with Gaussian distri-
butions and then peak positions and areas are determined. 
A high symmetric peak originating from the F1s is ob-
served at ~685 eV. The O1s peak at 532.5 eV is deter-
mined as the absorbed oxygen (530.0–531.5 eV) other 
than the lattice oxygen (527.5–530.0 eV)[19]. The peak at 
50.6 eV is from Mg2p. The Sr3d spectra show a pair of 
spin-orbit split components at 135.5 eV (Sr3d3/2) and 
133.5 eV (Sr 3d5/2)

[5]. Two major peaks at 902.6 and 
884.3 eV found in SMF: 0.007Ce, SMF: 0.013Ce and 
SMF: 0.035Ce powders are determined as Ce3d3/2 and 
Ce3d5/2 doublets, which provides direct evidence of 
Ce3+-doping in the SrMgF4 host (Fig. 2(a))[37-38]. 

The coexistence of Ce3+ and Ce4+ in SMF: 0.007Ce, 
SMF: 0.013Ce and SMF: 0.035Ce samples are evidenced 
by a shoulder observed on main peaks of Ce3d3/2 and 
Ce3d5/2 (Fig. 2(b)). They are composed of eight peaks 
corresponding to four pairs of spin-orbit doublets accor-
ding to previous reports[37-39]. Peaks marked by u, u', u″ 
and u‴ are attributed to Ce3d3/2, whereas those marked by 
v, v', v″ and v‴ are assigned to Ce3d5/2. Sub-bands labeled 
u'(902.6 eV) and v'(884.3 eV) represent the 3d104f1 initial 

electronic state corresponding to Ce3+, and sub-bands 
labeled u(900.7 eV), u″(906.0 eV), u‴(916.3 eV), 
v(882.3 eV), v''(887.7 eV) and v‴(898.0 eV) represent the 
3d104f0 state of Ce4+. The Ce3+/(Ce3++Ce4+) ratios in SMF: 
0.007Ce, SMF: 0.013Ce and SMF: 0.035Ce samples are 
53.9%, 50.9% and 44.1%, respectively. The ratios decreased 
with the Ce content increasing. 

2.3  Absorption / photoluminescence spectra 
Absorption spectra of SrMgF4:xCe (x=0, 0.007, 0.013 

and 0.035) at RT consist of four bands (Fig. 3) at 212 nm 

(a1), 226 nm (a2), (2584) nm (B) and (291 1) nm (C) in 
the UV region (the errors for wavelengths represent 
wavelength range/change/shift originated from different 
Ce-doping contents, the same hereinafter). The band a1 is 
close to the edge of UV region. The band a2 is associated 
with radiative recombination in some non-identified 
point defects such as color centers based on anion 
vacancies, structural defects in cation sub-lattices or 
impurity defects. Bands B and C correspond to the 
energy levels of 5d1 excited states of Ce3+-polyhedra[15]. 

Fluorescence bands of emission spectra (Fig. 4) are 

obtained with double peaks at (3133)/(3393) nm when 
samples are excited at λex=258 nm (band B) and 295 nm 
(band C), coincided with two of the absorption bands. 

Stokes shift (S) represents the wavelength difference 
between positions of the band maxima of absorption and 
fluorescence emission spectra of the same electronic 
transition. The band C decomposes into two Gaussians 
(i.e. excitation band C@~316/339 nm) as a function of 

energy in the form 
2

2
w

( )
( ) exp

2
c

i
x x

I x I
x

 
   

 
 , where 

Ii is the amplitude, xc is the peak center and xw the peak 
width[15,28]. They are assigned to the electric dipole- 

 

 
 

Fig. 2  XPS spectra of SrMgF4: xCe powders (x = 0, 0.007, 0.013 and 0.035) 
(a) Whole pattern; (b) Ce3d 
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allowed 5d–4f transitions, from the 4f1 (2F5/2) ground 

state to the excited-level 5d1 ( 2
3/2D ) and the modified 

excited-level 5d1 ( 2 *
3/2D ) by the crystal field (Fig. 5), i.e. 

4f1 2
5/2( F ) ex 295 n= m5d1 2 *

3/2( D )  em= ( )~315 / 338 3  nm  

4f1 ( 2
5/2F )/4f1 ( 2

7/2F )[21,40-41]. Therefore, the energy 

difference ( F ) between 4f1 ( 2
5/2F ) and 4f1 ( 2

7/2F ) 

levels is ~2147 cm–1, in good agreement with the reported 
value of 2200[15], 2000[42] and 1795[21] cm–1. It can be 
approximated to the crystal-field-splitting energy of ground 

states between 2gt  ( dxy , d yz , dzx ) and ge  ( 2d
z

, 

2 2d
x y ) for Ce3+ ions. Otherwise, the intensity of 

excitation band C increases with increment of the Ce3+ 

concentration (0<x≤0.035%). 

Excitation spectra (Fig. 4) obtained by monitoring the 
fluorescence intensity at λem = 315/336 nm include both 
components of excitation bands B and C, because of the 
overlap of the high energy component of band C and low 
energy component of band B[15,28]. The zero-phonon line, 
where excitation and emission spectra overlap with each 
other, were observed at 310 nm. In Ce-doped SrMgF4, 
absorption/excitation bands of Ce3+ ion with [Xe]4f15d06s0 
electronic configuration in trigonal symmetry[28] corres-
pond to electronic-dipole transition, which is from the 4f1 
(2F5/2, 7/2) ground-state to the 5d1 (2D3/2, 5/2) excited-state. 
The energy level of the excited-state 5d1 (2D3/2) can be 

estimated from the excitation band B ((2642)/ 

(2641) nm). Thus, B site is assigned to Ce3+ occupying 
the ordinary sites of Sr2+[15,25,28]. Lowering symmetry of 
C site is derived from the spread of B excitation bands. 
Taking account of the Ce3+-concentration dependence 

and inhomogeneous broadening of band C ((2932)/ 

(2931) nm), C site is assigned to Ce3+ with the dis-
tribution of the crystal field. Energy levels of the 5d1 
excited states were modified strongly by the crystal field 
when the symmetry of Ce3+-polyhedra changed from  

 

 
 

Fig. 3  Absorption spectra of SrMgF4: xCe powders (x=0, 
0.007, 0.013, and 0.035) 

 
 

Fig. 4  Emission/excitation spectra of SrMgF4: xCe powders 
(x=0.007, 0.013 and 0.035). 
(a) λex=258 nm and λem=315 nm; (b) λex=295 nm and λem=336 nm 

 

 
 

Fig. 5  Energy levels observed in SrMgF4: xCe powders 
(x=0.007, 0.013, and 0.035) 

 
high- (orthorhombic) to low- (monoclinic) symme-
try[15,24-25,28]. 

3  Conclusions 

In the synthesized SrMgF4: xCe (x=0, 0.007, 0.013 
and 0.035) powders, pure phases with monoclinic 
superstructures were found at x=0, 0.007 and 0.013. 
Absorption and photoluminescence spectra show Ce- 
doped SrMgF4 samples have two primary absorption 
peaks at 258/295 nm and two emission peaks at 315/ 
336 nm in the UV region at room temperature, which 
have similar line-shape and line-width except for their 
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peak shift. They are assigned to the Ce3+-polyhedra with 
a strong crystal field as a consequence of the monoclinic 
superstructures. 
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Ce 掺杂 SrMgF4超结构多晶体的吸收/光致发光光谱 

柳 琪，朱 璨，谢贵震，王 俊，张东明，邵刚勤 
(武汉理工大学 材料复合新技术国家重点实验室, 武汉 430070) 

摘 要: 稀土(RE)离子掺杂的钙钛矿型氟化物是可调谐光学材料的候选材料。本工作通过沉淀法合成了 SrMgF4: xCe 

(x = 0, 0.007, 0.013 和 0.035)粉末。X 射线衍射(XRD)分析表明所获得的荧光粉具有单斜超结构, 价态分析证实存在

Ce3+/Ce4+混合价, 在紫外光区通过不同波长的激发光观察到两个荧光带 B 和 C。当 Ce3+多面体的对称性从高对称

变为低对称时, 源于单斜超结构的晶体场导致能级发生强烈的改变。 

关  键  词: SrMgF4; 铈掺杂; 超结构; 钙钛矿; 光致发光 
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